Package: wordvector 0.2.0
wordvector: Word and Document Vector Models
Create dense vector representation of words and documents using 'quanteda'. Currently implements Word2vec (Mikolov et al., 2013) <doi:10.48550/arXiv.1310.4546> and Latent Semantic Analysis (Deerwester et al., 1990) <doi:10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9>.
Authors:
wordvector_0.2.0.tar.gz
wordvector_0.2.0.zip(r-4.5)wordvector_0.2.0.zip(r-4.4)wordvector_0.2.0.zip(r-4.3)
wordvector_0.2.0.tgz(r-4.4-x86_64)wordvector_0.2.0.tgz(r-4.4-arm64)wordvector_0.2.0.tgz(r-4.3-x86_64)wordvector_0.2.0.tgz(r-4.3-arm64)
wordvector_0.2.0.tar.gz(r-4.5-noble)wordvector_0.2.0.tar.gz(r-4.4-noble)
wordvector_0.2.0.tgz(r-4.4-emscripten)wordvector_0.2.0.tgz(r-4.3-emscripten)
wordvector.pdf |wordvector.html✨
wordvector/json (API)
NEWS
# Install 'wordvector' in R: |
install.packages('wordvector', repos = c('https://koheiw.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/koheiw/wordvector/issues
- data_corpus_news2014 - Yahoo News summaries from 2014
Last updated 24 days agofrom:f4057d655f. Checks:3 OK, 6 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 09 2025 |
R-4.5-win-x86_64 | OK | Jan 09 2025 |
R-4.5-linux-x86_64 | OK | Jan 09 2025 |
R-4.4-win-x86_64 | NOTE | Jan 09 2025 |
R-4.4-mac-x86_64 | NOTE | Jan 09 2025 |
R-4.4-mac-aarch64 | NOTE | Jan 09 2025 |
R-4.3-win-x86_64 | NOTE | Jan 09 2025 |
R-4.3-mac-x86_64 | NOTE | Jan 09 2025 |
R-4.3-mac-aarch64 | NOTE | Jan 09 2025 |
Exports:analogysimilaritytextmodel_doc2vectextmodel_lsatextmodel_word2vecweights
Dependencies:clifastmatchglueirlbaISOcodesjsonlitelatticelifecyclemagrittrMatrixproxyCquantedaRcppRcppArmadilloRcppEigenrlangRSpectrarsvdSnowballCstopwordsstringixml2yaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Convert formula to named character vector | analogy |
Extract word vectors | as.matrix.textmodel_wordvector |
Yahoo News summaries from 2014 | data_corpus_news2014 |
Compute similarity between word vectors | similarity |
Create distributed representation of documents | textmodel_doc2vec |
Latent Semantic Analysis model | textmodel_lsa |
Word2vec model | textmodel_word2vec |
[experimental] Extract word vector weights | weights |