--- title: "Similarity and Distance Measures in proxyC" author: "Kohei Watanabe" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Similarity and Distance Measures in proxyC} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` This vignette explains how **proxyC** compute the similarity and distance measures. ## Notation $$ \begin{gather} \vec{x} = [x_i, x_{i + 1}, \dots, x_n] \\ \vec{y} = [y_i, y_{i + 1}, \dots, y_n] \end{gather} $$ The length of the vector $n = ||\vec{x}||$, while $|\vec{x}|$ is the absolute values of the elements. Operations on vectors are element-wise: $$ \begin{gather} \vec{z} = \vec{x}\vec{y} \\ n = ||\vec{x}|| = ||\vec{y}|| =||\vec{z}|| \end{gather} $$ Summation of the elements of vectors is written using sigma without specifying the range: $$ \sum{\vec{x}} = \sum_{i=1}^{n}{x_i} $$ When the elements of the vector is compared with a value in a pair of square brackets, the summation is counting the number of elements that equal (or unequal) to the value: $$ \sum{[\vec{x} = 1]} = \sum_{i=1}^{n}{[x_i = 1]} $$ ## Similarity Measures Similarity measures are available in `proxyC::simil()`. #### Cosine similarity ("cosine") $$ simil = \frac{\sum{\vec{x}\vec{y}}}{\sqrt{\sum{\vec{x} ^ 2}} \sqrt{\sum{\vec{y} ^ 2}}} $$ #### Pearson correlation coefficient ("correlation") $$ simil = \frac{Cov(\vec{x},\vec{y})}{Var(\vec{x}) Var(\vec{y})} $$ #### Jaccard similarity ("jaccard" and "ejaccard") The values of $x$ and $y$ are Boolean for "jaccard". $$ \begin{gather} e = \sum{\vec{x} \vec{y}} \\ w = \text{user-provided weight} \\ simil = \frac{e}{\sum{\vec{x} ^ w} + \sum{\vec{y} ^ w} - e} \end{gather} $$ #### Fuzzy Jaccard similarity ("fjaccard") The values must be $0 \le x \le 1.0$ and $0 \le y \le 1.0$. $$ simil = \frac{\sum{min(\vec{x}, \vec{y})}}{\sum{max(\vec{x}, \vec{y})}} $$ #### Dice similarity ("dice" and "edice") The values of $x$ and $y$ are Boolean for "dice". $$ \begin{gather} e = \sum{\vec{x} \vec{y}} \\ w = \text{user-provided weight} \\ simil = \frac{2 e}{\sum{\vec{x} ^ w} + \sum{\vec{y} ^ w}} \end{gather} $$ #### Hamann similarity ("hamann") $$ \begin{gather} e = \sum{\vec{x} \vec{y}} \\ n = ||\vec{x}|| = ||\vec{y}|| \\ u = n - e \\ simil = \frac{e - u}{e + u} \end{gather} $$ #### Faith similarity ("faith") $$ \begin{gather} t = \sum{[\vec{x} = 1][\vec{y} = 1]} \\ f = \sum{[\vec{x} = 0][\vec{y} = 0]} \\ n = ||\vec{x}|| = ||\vec{y}|| \\ simil = \frac{t + 0.5 f}{n} \end{gather} $$ #### Simple matching ("matching") $$ simil = \sum{[\vec{x} = \vec{y}]} $$ ## Distance Measures Similarity measures are available in `proxyC::dist()`. Smoothing of the vectors can be performed when `method` is "chisquared", "kullback", "jefferys" or "jensen": the value of `smooth` will be added to each element of $\vec{x}$ and $\vec{y}$. #### Manhattan distance ("manhattan") $$ dist = \sum{|\vec{x} - \vec{y}|} $$ #### Canberra distance ("canberra") $$ dist = \frac{|\vec{x} - \vec{y}|}{|\vec{x}| + |\vec{y}|} $$ #### Euclidian ("euclidian") $$ dist = \sum{\sqrt{\vec{x}^2 + \vec{y}^2}} $$ #### Minkowski distance ("minkowski") $$ \begin{gather} p = \text{user-provided parameter} \\ dist = \left( \sum{|\vec{x} - \vec{y}| ^ p} \right) ^ \frac{1}{p} \end{gather} $$ #### Hamming distance ("hamming") $$ dist = \sum{[\vec{x} \ne \vec{y}]} $$ #### The largest difference between values ("maximum") $$ dist = \max{\vec{x} - \vec{y}} $$ #### Chi-squared divergence ("chisquared") $$ \begin{gather} O_{ij} = \text{augmented matrix from } \vec{x} \text{ and } \vec{y} \\ E_{ij} = \text{matrix of expected count for } O_{ij} \\ dist = \sum{\frac{(O_{ij} - E_{ij}) ^ 2}{ E_{ij}}} \end{gather} $$ #### Kullback--Leibler divergence ("kullback") $$ \begin{gather} \vec{p} = \frac{\vec{x}}{\sum{\vec{x}}} \\ \vec{q} = \frac{\vec{y}}{\sum{\vec{y}}} \\ dist = \sum{\vec{q} \log_2{\frac{\vec{q}}{\vec{p}}}} \end{gather} $$ #### Jeffreys divergence ("jeffreys") $$ \begin{gather} \vec{p} = \frac{\vec{x}}{\sum{\vec{x}}} \\ \vec{q} = \frac{\vec{y}}{\sum{\vec{y}}} \\ dist = \sum{\vec{q} \log_2{\frac{\vec{q}}{\vec{p}}}} + \sum{\vec{p} \log_2{\frac{\vec{p}}{\vec{q}}}} \end{gather} $$ #### Jensen-Shannon divergence ("jensen") $$ \begin{gather} \vec{p} = \frac{\vec{x}}{\sum{\vec{x}}} \\ \vec{q} = \frac{\vec{y}}{\sum{\vec{y}}} \\ \vec{m} = \frac{1}{2} (\vec{p} + \vec{q}) \\ dist = \frac{1}{2} \sum{\vec{q} \log_2{\frac{\vec{q}}{\vec{m}}}} + \frac{1}{2} \sum{\vec{p} \log_2{\frac{\vec{p}}{\vec{m}}}} \end{gather} $$ ## References - Choi, S., Cha, S., & Tappert, C. C. (2010). A survey of binary similarity and distance measures. Journal of Systemics, *Cybernetics and Informatics*, 8(1), 43–48. - Nielsen, F. (2019). On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means. *Entropy*, 21(5), 485. https://doi.org/10.3390/e21050485 - Jain, G., Mahara, T., & Tripathi, K. N. (2020). A Survey of Similarity Measures for Collaborative Filtering-Based Recommender System. In M. Pant, T. K. Sharma, O. P. Verma, R. Singla, & A. Sikander (Eds.), *Soft Computing: Theories and Applications* (pp. 343–352). Springer. https://doi.org/10.1007/978-981-15-0751-9_32 - Miyamoto, S. (1990). Hierarchical Cluster Analysis and Fuzzy Sets. In S. Miyamoto (Ed.), Fuzzy Sets in Information Retrieval and Cluster Analysis (pp. 125–188). Springer Netherlands. https://doi.org/10.1007/978-94-015-7887-5_6