Package: LSX 1.4.2
LSX: Semi-Supervised Algorithm for Document Scaling
A word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.
Authors:
LSX_1.4.2.tar.gz
LSX_1.4.2.zip(r-4.5)LSX_1.4.2.zip(r-4.4)LSX_1.4.2.zip(r-4.3)
LSX_1.4.2.tgz(r-4.4-any)LSX_1.4.2.tgz(r-4.3-any)
LSX_1.4.2.tar.gz(r-4.5-noble)LSX_1.4.2.tar.gz(r-4.4-noble)
LSX_1.4.2.tgz(r-4.4-emscripten)LSX_1.4.2.tgz(r-4.3-emscripten)
LSX.pdf |LSX.html✨
LSX/json (API)
NEWS
# Install 'LSX' in R: |
install.packages('LSX', repos = c('https://koheiw.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/koheiw/lsx/issues
Pkgdown site:https://koheiw.github.io
- data_dictionary_ideology - Seed words for analysis of left-right political ideology
- data_dictionary_sentiment - Seed words for analysis of positive-negative sentiment
- data_textmodel_lss_russianprotests - A fitted LSS model on street protest in Russia
lsaquantedasentiment-analysistext-analysis
Last updated 24 days agofrom:551c1264f7. Checks:3 OK, 4 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 09 2025 |
R-4.5-win | OK | Jan 09 2025 |
R-4.5-linux | OK | Jan 09 2025 |
R-4.4-win | NOTE | Jan 09 2025 |
R-4.4-mac | NOTE | Jan 09 2025 |
R-4.3-win | NOTE | Jan 09 2025 |
R-4.3-mac | NOTE | Jan 09 2025 |
Exports:as.coefficients_textmodelas.seedwordsas.statistics_textmodelas.summary.textmodelas.textmodel_lssbootstrap_lsschar_contextcoefficients.textmodel_lsscohesiondiagnosysoptimize_lssseedwordssmooth_lsstextmodel_lsstextplot_componentstextplot_similtextplot_termstextstat_context
Dependencies:clicolorspacedigestfansifarverfastmatchggplot2ggrepelgluegtableisobandISOcodesjsonlitelabelinglatticelifecyclelocfitmagrittrMASSMatrixmgcvmunsellnlmensyllablepillarpkgconfigplyrproxyCquantedaquanteda.textstatsR6RColorBrewerRcppRcppArmadilloRcppEigenreshape2rlangRSpectrascalesSnowballCstopwordsstringistringrtibbleutf8vctrsviridisLitewithrxml2yaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Convert a list or a dictionary to seed words | as.seedwords |
[experimental] Compute polarity scores with different hyper-parameters | bootstrap_lss |
Extract model coefficients from a fitted textmodel_lss object | coef.textmodel_lss coefficients.textmodel_lss |
Seed words for analysis of left-right political ideology | data_dictionary_ideology |
Seed words for analysis of positive-negative sentiment | data_dictionary_sentiment |
A fitted LSS model on street protest in Russia | data_textmodel_lss_russianprotests |
[experimental] Compute variance ratios with different hyper-parameters | optimize_lss |
Prediction method for textmodel_lss | predict.textmodel_lss |
Seed words for Latent Semantic Analysis | seedwords |
Smooth predicted polarity scores | smooth_lss |
Fit a Latent Semantic Scaling model | textmodel_lss textmodel_lss.dfm textmodel_lss.fcm |
Plot similarity between seed words | textplot_simil |
Plot polarity scores of words | textplot_terms |
Identify context words | char_context textstat_context |