Package: LSX 1.4.2

LSX: Semi-Supervised Algorithm for Document Scaling

A word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.

Authors:Kohei Watanabe [aut, cre, cph]

LSX_1.4.2.tar.gz
LSX_1.4.2.zip(r-4.5)LSX_1.4.2.zip(r-4.4)LSX_1.4.2.zip(r-4.3)
LSX_1.4.2.tgz(r-4.4-any)LSX_1.4.2.tgz(r-4.3-any)
LSX_1.4.2.tar.gz(r-4.5-noble)LSX_1.4.2.tar.gz(r-4.4-noble)
LSX_1.4.2.tgz(r-4.4-emscripten)LSX_1.4.2.tgz(r-4.3-emscripten)
LSX.pdf |LSX.html
LSX/json (API)
NEWS

# Install 'LSX' in R:
install.packages('LSX', repos = c('https://koheiw.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/koheiw/lsx/issues

Pkgdown site:https://koheiw.github.io

Datasets:

On CRAN:

lsaquantedasentiment-analysistext-analysis

6.23 score 55 stars 14 scripts 455 downloads 2 mentions 18 exports 50 dependencies

Last updated 24 days agofrom:551c1264f7. Checks:3 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 09 2025
R-4.5-winOKJan 09 2025
R-4.5-linuxOKJan 09 2025
R-4.4-winNOTEJan 09 2025
R-4.4-macNOTEJan 09 2025
R-4.3-winNOTEJan 09 2025
R-4.3-macNOTEJan 09 2025

Exports:as.coefficients_textmodelas.seedwordsas.statistics_textmodelas.summary.textmodelas.textmodel_lssbootstrap_lsschar_contextcoefficients.textmodel_lsscohesiondiagnosysoptimize_lssseedwordssmooth_lsstextmodel_lsstextplot_componentstextplot_similtextplot_termstextstat_context

Dependencies:clicolorspacedigestfansifarverfastmatchggplot2ggrepelgluegtableisobandISOcodesjsonlitelabelinglatticelifecyclelocfitmagrittrMASSMatrixmgcvmunsellnlmensyllablepillarpkgconfigplyrproxyCquantedaquanteda.textstatsR6RColorBrewerRcppRcppArmadilloRcppEigenreshape2rlangRSpectrascalesSnowballCstopwordsstringistringrtibbleutf8vctrsviridisLitewithrxml2yaml